Seeing 'water' in 'desert': Semantic radical activation in visual Japanese compound recognition

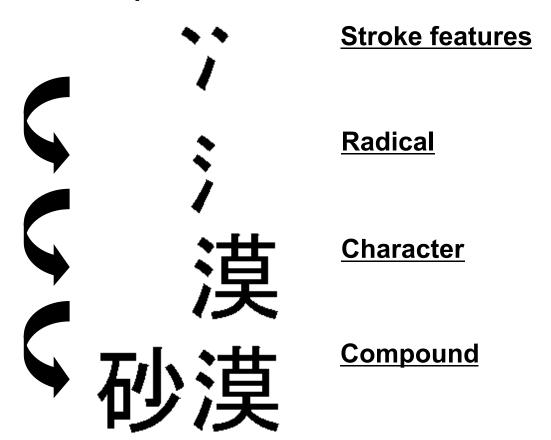
Koji Miwa, Gary Libben & R. Harald Baayen *University of Alberta*

Canadian Linguistics Association Conference Vancouver, June 1st 2008

Semantic Radicals

• What is a semantic radical?

: Sanzui-hen ('water' radical)


 Semantic radicals are orthographic morphemes that have no phonological counterpart.

Research Question

Do these anomalous morphemes play a detectable role during reading of two-character Japanese compounds?

Past Studies

• **Decompositional models**: Multi-level lexical representation

'sand - broad' = 'desert'

Past Studies

- Evidences for radical processing in visual word recognition
 - Flores d'Arcais & Saito (1993)
 - Flores d'Arcais, Saito, Kawakami (1995)
 - Feldman & Siok (1997)
 - Feldman & Siok (1999)
 - Saito, Yamazaki, & Masuda (2002)
 - Yencken & Baldwin (2006)
- Feldman & Siok (1997) and Feldman & Siok (1999)
 - Radicals with large families elicit shorter RTs

Issues to be Considered

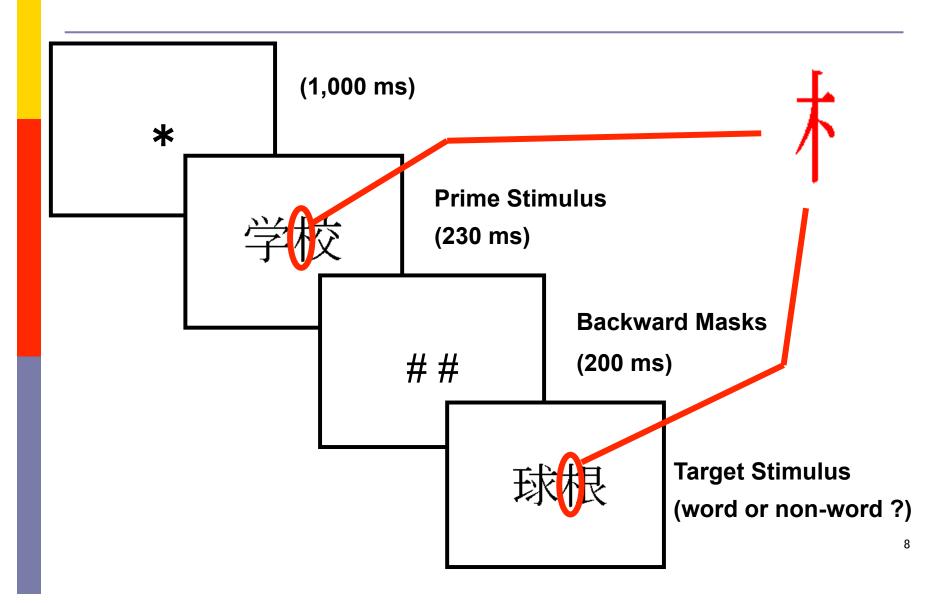
The present study extends previous research using lexical decision by:

- Presenting two-character compounds
 - No isolated presentation of radicals
 - Most Japanese words are two-character compounds
 - Less likely to induce strategic radical decomposition
- Using better non-words
 - NOT illegal combinations of radicals
 - BUT illegal combinations of characters
 - * Use of illegal combinations of radicals as non-words may encourage participants to decompose characters in an unnatural way

Experiment: LD with Priming

Original Hypothesis:

Repetition of semantic radicals induces a facilitatory priming effect.


Participants

- 30 native speakers of Japanese

Material

- 46 prime-target pairs of two-character compounds
- 46 prime-nonword pairs

Experiment: LD with Priming

Interim Result

- Facilitatory priming effect (25 ms) was not significant (p=0.09).
- But, fortunately, we can make use of analyses of covariance using a wide range of lexical predictors.

Lexical Predictors

:1

: Sanzui-hen ('water' radical)

Radical type frequency: 103

Radical token frequency: 503,833

> Radical stroke: 3

> Radical transparency: 5.14 (7-point ratings about

how meaningful the radical is)

: *eki* 'liquid'

Character AoA:

Character type frequency: 20

Character token frequency: 22,792

Character stroke

Lexical Predictors

砂漠

Compound

Compound Token Freq

漠

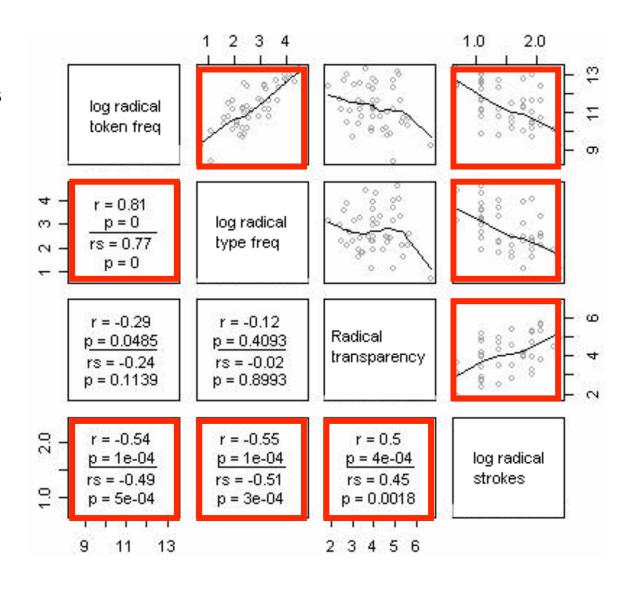
Character

- (Log) Right/ Left Characters Type Freq
- (Log) Right/ Left Characters Token Freq
- (Log) Right/ Left Characters AoA

?

Radical

(Log) Right/ Left Characters Radical Type Freq (Log) Right/ Left Characters Radical Token Freq Right Character's Radical Transparency



Stroke features

Right/ Left Characters Radical Stroke Right/ Left Characters Stroke

Multi-collinearity

 Many of the 21 variables are highly correlated.
 (e.g. radical properties)

Principal Component Regression

- We orthogonalized the predictors with principal component analysis (Uncorrelated new parameters were created).
- 2. We used the principal components as predictors.
- 3. We interpreted significant principal components by looking at the loadings of the original predictors.

Principal Component Regression

• In our principle component regression analysis, three principal components emerged as significant predictors (PC1, PC3, and PC5).

	Estimate	Std. Error	t value	p value
(Intercept)	6.59859	0.02960	222.9	0.000
PC1 inhibitory	0.03118	0.00862	3.62	0.000
PC3 facilitatory	-0.04017	0.01366	-2.94	0.003
PC5 facilitatory	-0.03333	0.01646	-2.03	0.043

Principal Component Regression: PC1

LogRadicalFreq LogRadicalTypeFreq LogTargetRightTypeFreq LogPrimeRightTokenFreq LogTargetRightTokenFreq LogPrimeWordFreq LogPrimeRightTypeFreq LogTargetLeftTokenFreg LogTargetLeftTypeFreq LogTargetWordFreg LeftRadicalStroke TargetLeftStroke LogLeftRadicalFreq RadicalTransparency LogLeftRadicalTypeFreq **TargetRightStroke TargetLeftAoA PrimeRightAoA RadicalStroke PrimeRightStroke TargetRightAoA**

-0.32595441 -0.32461342 -0.25719829 -0.24851236 -0.22849805 -0.20400900 -0.19793693 -0.19694687 -0.16765199 -0.06674472 -0.06558624 0.03508257

Type/ token frequencies of the right character, the right character's radical, and the prime.

0.05533828 0.18117849

0.18936575 0.22199603 0.22712781 0.23350434 0.25461382 0.26371383 0.29843572

Number of strokes and AoA of the right character's radical

Principal Component Regression: PC3

LeftRadicalStroke		-0.31890508
LogTargetLeftTypeFreq		-0.27377317
TargetRightAoA		-0.27015008
LogPrimeRightTokenFred	1	-0.21593121
RadicalTransparency		-0.19802870
LogPrimeRightTypeFreq		-0.15852085
LogPrimeWordFreq		-0.15197259
TargetRightStroke		-0.13537410
Log Target Left Token Freq		-0.06331644
RadicalStroke		-0.05751754
TargetLeftStroke		-0.05340011
LogRadicalTypeFreq		-0.03122143
LogLeftRadicalFreq		0.05025043
LogRadicalFreq		0.09020049
LogLeft Radical Type Freq		0.12549673
PrimeRightStroke		0.12576490
PrimeRightAoA	0.24687072	
LogTargetRightTypeFreq		0.25513908
TargetLeftAoA		0.26796378
LogTargetWordFreq	0.39901548	
${\color{red}\textbf{LogTargetRightTokenFre}}$	q	0.43306385

- A number of strokes of the left character's radical
- Type frequencies of the left character
- Right character's AoA

- Token frequencies of right characters
- Token frequencies of the compound

16

Principal Component Regression: PC5

-0.590242019
-0.526935150
-0.377893898
-0.151640066
-0.149656442
-0.090099401
-0.063713697
-0.061873990
-0.054440805
-0.030480989
-0.014648391
-0.004027343
0.028660268
0.038024481
0.045912640
0.078954418
0.080092633
0.096903705
0.152684837
0.157344826
0.301901441

- Type/ token frequencies
 of the left character's radical
- Number of the left character's strokes

AoA of the prime's right character

Influential Lexical Predictors

Compound

Target Word Freq

Log Right Character Type/ Token Freq,

Character

Left Character AoA

Log Left Character Type Freq, Right Character AoA

Radical

Log Right Character Radical Type/ Token Freq Log Left Character Radical Type/ Token Freq

Stroke features

Left/ Right Character Radical Stroke Left Character Stroke

Target Word Freq

✓ Word frequency effect

Compounds that occur more frequently are recognized faster.

漠

Character

Log Right Character Type/ Token Freq,

Log Left Character Type Freq

- ✓ When a compound has a <u>right</u> character with high frequencies of occurrence or with many type neighbors, the compound is recognized faster.
- ✓ When a compound has a <u>left</u> character with many type neighbors, the compound is recognized more slowly.
- => Modifier head competition for head status

漠

Character

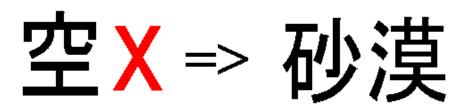
Left Character AoA, Right Character AoA

- ✓ When a compound's <u>right</u> character was learned early in school, the compound is recognized faster.
- ✓ When a compound's <u>left</u> character was learned early in school, the compound is recognized more slowly.
- => Modifier head competition for head status

Radical

Log Right Character Radical Type/ Token Freq Log Left Character Radical Type/ Token Freq

- ✓ When a compound's <u>right</u> character contains a semantic radical with high frequencies of occurrence or with many type neighbors, the compound is recognized faster.
- ✓ When a compound's <u>left</u> character contains a semantic radical with high frequencies of occurrence or with many type neighbors, the compound is recognized more slowly.
- => Modifier head competition for head status



Stroke features

Left/ Right Character Radical Stroke
Left/ Right Character Stroke

- ✓ When characters of a compound are made of many strokes, the compound is recognized slowly.
- => Orthographic complexity leads to slower word recognition.

Prime Properties

Prime Right Character Token Freq
Prime Right Character Stroke

- ✓ Presentation of a prime compound with highly frequent right character speeds up the recognition of a target compound.
- ✓ Presentation of a prime compound with a orthographically complex right character slows down the recognition of a target compound.
- => The primes were processed.

Conclusion

- The priming manipulation failed, but regression analyses show that semantic radicals are at work.
- Inclusion of distributional properties of words provides a better picture. When distributional data are not available, priming is a good option. Otherwise, regression offers a more powerful methodology.

Thank You

Correspondence

Koji Miwa: kmiwa@ualberta.ca

Acknowledgment

I would like to express my special thanks to members of the Centre for Comparative Psycholinguistics for their feedbacks on the earlier version of this presentation and for their casual advices and insights.

Social Sciences and Humanities Research Council of Canada

Conseil de recherches en sciences humaines du Canada

This research was supported by a Major Collaborative Research Initiative Grant (#412-2001-1009) from the Social Sciences and Humanities Research Council of Canada to Gary Libben (Director), Gonia Jarema, Eva Kehayia, Bruce Derwing, and Lori Buchanan (Coinvestigators).